
A Composable, QoS-aware and Web Services-based Execution Model
for ebXML BPSS BusinessTransactions

Andreas Schönberger and Guido Wirtz
Distributed and Mobile Systems Group
Otto-Friedrich-University of Bamberg

Bamberg, Germany
andreas.schoenberger@uni-bamberg.de

guido.wirtz@uni-bamberg.de

Christian Huemer
Business Informatics Group

Vienna University of Technology
Vienna, Austria

huemer@big.tuwien.ac.at

Marco Zapletal
Electronic Commerce Group

Vienna University of Technology
Vienna, Austria

marco@ec.tuwien.ac.at

Abstract

Adequate IT support for Business-to-Business integration
(B2Bi) is indispensable in today’s globalized world. Agree-
ment among personnel from different enterprises as well
as distributed computing issues are major challenges to
the automation of B2Bi processes. These challenges can be
addressed by applying the choreography language ebXML
BPSS (ebBP) for declaratively specifying B2Bi processes
and using Web services and WS-BPEL as dedicated inte-
gration technologies. ebBP BusinessTransactions (BT) are
the primary building block of ebBP choreographies and
specify the exchange of up to two business documents in
a declarative and technology-agnostic way. Composing BTs
within choreographies and realization of QoS raise impor-
tant requirements for the orchestration layer. This paper
investigates these requirements and presents a composable,
abstract, flexible and QoS-aware execution model that can
be implemented using Web Services and BPEL.
Keywords: B2Bi, choreography, orchestration, ebXML
BPSS, WS-BPEL

1. Introduction

The importance of B2Bi is evidenced by the work of
numerous B2Bi standardization bodies. For example, Roset-
taNet1 reports that its members “transact billions of dollars
in transactions within their trading networks using Roset-
taNet Partner Interface Processes (PIPs)”. Yet, B2Bi is far
from trivial as personnel from different enterprises with
different vocabulary and background have to agree upon the
business documents to exchange, control flow of document
exchanges and the implications of document exchanges.
Atomic building blocks have been identified as facilitator
for this agreement task ([1], [2]). ebXML BPSS (ebBP) [3]
is a dedicated B2Bi choreography language that offers so-
called BusinessTransactions (BT) as atomic building blocks.

1. www.rosettanet.org

BTs specify the exchange of up to two business documents
together with Quality-of-Service (QoS) and state alignment
parameters. For B2Bi processes of more realistic size, BTs
can be composed within so-called BusinessCollaborations
(BC). While the declarative and technology-independent na-
ture of ebBP is beneficial for agreement, the implementation
of B2Bi processes in the face of distributed and hetero-
geneous systems calls for a well-defined execution model.
As a major integration technology, Web Services and WS-
BPEL (BPEL)[4] have been proposed as implementation
technology for ebBP BTs, e.g., [5] or [6]. Up to now, the
aspects of composing BTs within BCs as well as the impact
of QoS realization on control flow have not sufficiently been
considered.
This paper investigates the implications of composition
and QoS realization for the execution of BTs. The main
contribution of the paper is a state-machine based execution
model for ebBP BTs. The model is flexible, composable and
QoS-aware as it allows for BT parameterizations, e.g., QoS,
enables composition and reflects the implications of Web
service based QoS realization. Although implementability
and validity have been checked for Web services and BPEL
by means of a prototype2, the model is abstract in allowing
for different integration styles or technologies.
Section 2 gives a short introduction to ebBP and BPEL;
section 3 provides an overview of the integration architecture
defining the background for the execution model. Subse-
quently, the requirements for the execution model as well
as the execution model itself are presented in sections 4
and 5. After discussing related work in section 6, section 7
concludes and points out directions for future work.

2. Basics

ebBP and BPEL are core to our approach. Whereas
the choreography language ebBP describes the interaction
of integration partners from a global perspective, the

2. Available at http://www.uni-bamberg.de/pi/ebBP-BT-prototype.

www.rosettanet.org
http://www.uni-bamberg.de/pi/ebBP-BT-prototype


orchestration language BPEL defines the partners’ local
implementation view.
ebBP is based on the concept of BusinessTransactions
(BT) exchanging business documents (cf. section 4.1).
So-called BusinessCollaborations (BC) with at least two
roles (integration partners) can be used to build complex
integration models. Control flow constructs like Decision,
Join or Fork choreograph BusinessTransactionActivities
(BTA) and BusinessCollaborationActivities (CA) that
specify the actual execution of BusinessTransactions and
BusinessCollaborations, respectively. BTAs and CAs add
execution parameters such as TimeToPerform and map the
roles of the performing BusinessCollaboration to the roles
of the performed activity.
BPEL is used for defining executable (or abstract)
processes composed by a series of incoming or outgoing
Web service calls. So-called partnerLinkTypes are defined
within corresponding WSDL files that define roles in Web
service communications based on WSDL portTypes. The
BPEL process under consideration then uses partnerLink
definitions for incorporating the roles of partnerLinkTypes
and, thus, defines the functionality consumed or offered by
the process. Based on these partnerLinks synchronous or
asynchronous interactions like invoke, receive or onMessage
are defined and constructs like sequence, if and while are
used to specify the control flow between these interactions.
For details please refer to [4].

3. Integration Architecture

Integration architecture plays an important role in the
design of an ebBP BT execution model. In [7], a dis-
tributed integration architecture for performing ebBP chore-
ographies has been proposed. Its core characteristics are
modularization and separation of control flow logic from
business logic. For each ebBP BT/BC a separate set of
so-called control processes (implementations of ebXML’s
Business Service Interfaces) handle control flow and deal
with distributed computing issues. In order to handle legacy
systems, business logic is assumed to be encapsulated by
backend systems. The backend systems signal the need for
new BT/BC executions to the control processes which in
turn call back the backends’ business document creation
and validation facilities. The interaction between control
processes and backends of an integration partner is assumed
to be safe in the sense that messages do not get lost due to
unreliable media or system crashes.
Figure 1 shows a modularized integration scenario of two

integration partners A and B. At the BC level, there is a
backend component as well as a control process for each
integration partner (long vertical boxes). Partner A starts
out with detecting the need for performing the agreed-upon
BC. Accordingly, A’s backend sends a Start message to A’s

Figure 1. Modularized B2Bi integration scenario

control process which, in turn, initiates the BC together with
B’s control process. B’s control process notifies B’s backend
that a new BC instance has been started. Subsequently, A’s
backend gets notified that the collaboration initialization has
been finished and then requests the execution of a lower level
BTA. The control processes then negotiate BTA parameters
like an instance identifier or a time limit and pass on control
to the lower level BTA control processes (presented within
the oval forms) which eventually produce a result value. This
result value is then used for routing the control flow. In this
fashion, BTAs defined in the ebBP choreography will be
performed until an end state has been reached.
While this scenario leaves out several details about BC level
control process interaction, it provides the principle setting
for analyzing the requirements for an ebBP BT execution
model.

4. Requirements Analysis

The core requirement for a BT execution model is to
be conform with the ebBP specification of a BT that is
presented in section 4.1. Additional requirements concerning
result computation and realization of QoS, configuration
options of the ebBP model as well as the containing BC’s
control flow are described in sections 4.2, 4.3 and 4.4.



4.1. The ebBP BusinessTransaction Model

An ebBP BT is a technology-agnostic specification of the
exchange of a business document and an optional business
document response between exactly two partners. So-called
BusinessActivities (BA) specify each business document to
be exchanged, together with additional business signals and
business related QoS properties. Business signals, namely
ReceiptAcknowledgement (RA) and AcceptanceAcknowl-
edgement (AA), are designed to give the business document
sender information about the state of a business document’s
processing by the receiver. A RA may indicate that a
business document has been received by the partner’s control
process or, if the so-called isIntelligibleCheckRequired is
flagged, that validation checks like structure or schema
validation have been performed (cf. [3], section 3.4.9.3). An
AA indicates that the business document has been accepted
for business processing (cf. [3], section 3.4.9.3). For both,
RA and AA, according ReceiptAcknowledgementExcep-
tions (RAE) and AcceptanceAcknowledgementExceptions
(AAE) are defined as well as a so-called GeneralException
(GE, cf. [3], section 3.6.2.3) that covers all exceptional cases
other than RAE and AAE.

QoS Attribute Level of Specification
isAuthenticated Doc
isConfidential Doc
isTamperDetectable Doc
isIntelligibleCheckRequired BA
isNonRepudiationRequired BA
isNonRepudiationReceiptRequired BA
timeToAcknowledgeReceipt BA
timeToAcknowledgeAcceptance BA
isAuthorizationRequired BA
retryCount BA
isGuaranteedDeliveryRequired BT
hasLegalIntent BTA
isConcurrent BTA
timeToPerform BTA

Table 1. ebBP QoS attributes and specification levels

The exchange of business documents and signals is con-
trolled by a set of business related QoS attributes as listed
in table 1. Each attribute is associated with its level of spec-
ification, i.e., whether it applies to the business document
(Doc), the BusinessActivity (BA), BusinessTransaction (BT)
or BusinessTransactionActivity (BTA) that represents the
execution of a BT within a collaboration. We consider most
of the ebBP QoS attributes as self-explanatory, but hasLe-
galIntent and isConcurrent deserve additional explanation.
For hasLegalIntent, ebBP states that “The hasLegalIntent
attribute could have widely differing interpretations and
enforceability depending on type of business, process, and
jurisdiction.” ([3], section 3.4.9.7). isConcurrent (cf. [3],

section 3.4.10.1) specifies whether multiple instances of a
BusinessTransaction within the same process or in different
processes (with the same party) are allowed to be active
at the same time. As a running example, listing 1 shows
an ebBP example specification for exchanging a purchase
order confirmation (POC) using a DataExchange business
transaction type. The referenced business document is taken
from RosettaNet1.

Listing 1. RosettaNet based BT example
1 <DataExchange
2 name="bt-PIP3A20"
3 nameID="bt-PIP3A20"
4 isGuaranteedDeliveryRequired="true">
5 <RequestingRole name="POC sender"
6 nameID="PIP3A20-role-sender"/>
7 <RespondingRole name="POC receiver"
8 nameID="PIP3A20-role-receiver"/>
9 <RequestingBusinessActivity

10 name="Send POC"
11 nameID="PIP3A20-ba-req"
12 isIntelligibleCheckRequired="true"
13 isNonRepudiationRequired="true"
14 isNonRepudiationReceiptRequired="true"
15 retryCount="3"
16 timeToAcknowledgeReceipt="PT3M"
17 timeToAcknowledgeAcceptance="PT6M">
18 <DocumentEnvelope
19 name="PIP3A20 POC"
20 businessDocumentRef="PIP3A20-POC"
21 nameID="PIP3A20-POC-de"
22 isAuthenticated="transient"
23 isConfidential="transient"
24 isTamperDetectable="transient"/>
25 <ReceiptAcknowledgement
26 name="ra" nameID="PIP3A20-ra"
27 signalDefinitionRef="ra2"/>
28 <ReceiptAcknowledgementException
29 name="rae" nameID="PIP3A20-rae"
30 signalDefinitionRef="rae2"/>
31 <AcceptanceAcknowledgement
32 name="aa" nameID="PIP3A20-aa"
33 signalDefinitionRef="aa2"/>
34 <AcceptanceAcknowledgementException
35 name="aae" nameID="PIP3A20-aae"
36 signalDefinitionRef="aae2"/>
37 </RequestingBusinessActivity>
38 </DataExchange>

4.2. Mutual Agreement and QoS

Technically speaking, the very purpose of executing BTs
is aligning state between integration partners. If a BTA is
performed within a collaboration then the result of the BTA
must be mutually agreed upon once the BTA execution has
terminated. Otherwise, the state of integration partners may
diverge. Clearly, the business implications of a BT execution
depend on the business logic applied to the exchanged doc-
uments. As ebBP only defines technical aspects of BTs, the
model used in this work defines the result of a BT execution
as the exchange state of business documents and business
signals as well as fulfillment of ebBP QoS requirements.
Fulfillment of ebBP QoS requirements is necessary because



these may affect the exchange state of a business document.
For example, if authentication is required then a business
document must not be considered to have been successfully
exchanged in case authentication information is missing.
Furthermore, QoS attributes have to be implemented in a
mutual way, i.e., both requester and responder must be
authenticated, sure about integrity et cetera. Finally, QoS has
to be equally applied to business documents and business
signals because business signals influence the result of
a BT execution. For example, using an unauthenticated
RA to acknowledge legibility of an authenticated business
document is not sensible.

4.3. Configurability

Different integration scenarios have different requirements
with respect to state alignment and QoS. Transmitting RA
and AA signals as well as defining strict security require-
ments may be required for the exchange of a purchase
order while a RA may be sufficient for the exchange of
a catalog. The different ebBP business transaction types
(cf. [3] section 3.4.9.1) like Notification, DataExchange or
CommercialExchange having different QoS needs evidence
this fact. Business transaction types define restrictions upon
the choice of BT parameters as described in section 4.1. For
example, the Notification pattern requires using a requesting
BA as well as a RA signal while the use of an AA as well as
some QoS attributes are optional. The ebBP DataExchange
pattern is the most flexible pattern in allowing either one
or two BAs and defining no constraints upon the use of
RAs, AAs or QoS parameters. In so far, the remaining
ebBP business transaction patterns can be interpreted as
instantiations of the DataExchange parameterization options.
Therefore, supporting the DataExchange pattern is selected
as a requirement for the ebBP BT execution model.

4.4. Composition Context

The invention of the isConcurrent parameter for ebBP
BTs shows that its context, i.e., the way a BT is used within
BCs, influences the BTs’ implementation. Considering the
integration setting described in section 3, the following
requirements can be derived:
Concurrent execution At one point in time, more than one
instance of a BT could be active.
Multiple execution Concurrent execution is one form of
executing a BT several times. Also, a BT may be repeatedly
executed in a loop, in sequence or in different control flow
branches. This implies that routing of the collaboration needs
more information than simply protocol success or failure.
In order to enable flexible routing, a BT implementation
should not only propagate a generic protocol outcome to the
superordinate collaboration but also hand over the business
documents exchanged.

Reconfiguration Multiple execution of BTs implies that the
need for alignment messages and QoS attributes may vary
as well. The ebBP model provides isConcurrent, hasLegal-
Intent and timeToPerform as configuration options for BTAs.

5. Execution Model

This section presents an execution model for ebBP BTs
by defining state machines for BT control processes. The
model is composable, flexible, QoS-aware and abstract.
Composability is facilitated in two ways. First, a consistent
BT execution result with respect to the state of business
document/signal exchanges and the fulfillment of QoS is
ensured. Second, requirements emerging from the compo-
sition context as described in section 4.4 are respected.
Furthermore, the execution model is flexible by allowing
for almost arbitrary instance values of the DataExchange
parameters. Also, the model is QoS-aware as the influence
of QoS realization (sec. 5.1) on control flow (sec. 5.2)
explicitly has been respected, most notably whether or not
mutual agreement upon message delivery can be expected
to be available at the messaging level (see below). In so
far, section 5.1 only analyzes QoS realization up to the
point that is decisive for building the control flow model.
Finally, the execution model is abstract in not prescribing a
concrete implementation of control processes. This is due
to the fact that the implementation of control processes
highly depends on the IT landscape of integration partners.
Although a Web services and BPEL-based prototype has
been implemented2, partners may not want to implement
control processes on top of BPEL or not even use Web
services. Other communication technologies that meet the
assumptions about QoS realization may be chosen as well.

5.1. Realization of Quality-of-Service

Realization of ebBP QoS requirements necessitates the
combination of distributed algorithms targeting at security
or reliability goals. Simply implementing a security layer
on top of a reliability layer is not possible for two reasons:
1) Mutual realization of security-related QoS properties
may create a new reliability problem. In practice, security
properties like authentication or integrity are frequently
implemented by means of attaching asymmetric digital
signatures to the message payload. The receiver then
can verify the authenticity of the sender, but the sender
cannot be sure about authenticity of the receiver. Sending
a signed acknowledgment with a hash value of the original
message does not help because then the sender of the
acknowledgment cannot be sure who has received the
acknowledgment.
2) A malicious attacker must be assumed. A malicious
attacker basically may try to manipulate any message
exchanged between integration partners. This not only



holds true for the message payloads but for lower-level
transport messages as well. This means that an attacker may
try to manipulate communication by means of tampering
with unsecured reliability messages. While an attacker may
not be able to break arbitrary security goals, the reliability
property is endangered.

Put short, mutual realization of security and reliability
properties calls for algorithms that implement a secured
reliable messaging layer.
The complexity of such algorithms raises the question
which implementation components should perform QoS
algorithms. In general, these algorithms may be implemented
at the protocol level, i.e., by the control processes, or at the
messaging level, i.e., by the messaging technology used for
communication. Note that control processes are application
level protocols. In practice, the complexity of distributed
algorithms barely is acceptable at the application level.
Fortunately, realization of QoS at the messaging level is
available for Web Services, especially the combination of
reliable messaging and security. [8] and [9] both report
the successful verification of the so-called “Secure WS-
ReliableMessaging Scenario”. In particular, [8] report suc-
cessful verification of “mutual authentication between client
and service on all security-relevant messages.” If Web
services are used, reliability (ebBP attribute isGuaranteed-
DeliveryRequired), confidentiality (isConfidential), integrity
(isTamperDetectable) and authentication (isAuthenticated)
therefore can be assumed to be implementable at the mes-
saging level. The same holds true for authorization (isAutho-
rizationRequired) that can easily be implemented once that
authentication is available.
Concurrency (isConcurrent) cannot be implemented at the
messaging level as it concerns the separation of BT ex-
ecution instances as well as synchronization of access to
backend systems. If BPEL is used for control process
implementation then BPEL correlations ([4], section 9) can
be used for enabling concurrent control process instances. If
not, WS-Addressing ([10]) could be used. Finally, if neither
BPEL correlations nor WS-Addressing are appropriate a
BPEL correlations like mechanism can be implemented
at the application level. As regards the synchronization
of access to backends we argue that functionality that is
exposed to integration processes must be able to deal with
concurrency. If necessary, the backends can be informed
about the isConcurrent value by means of a flag.
hasLegalIntent cannot directly be implemented because its
semantics are not clearly defined (cf. section 4.1). As far
as BT control processes are concerned, integration partners
may choose to map the hasLegalIntent value to differ-
ent instantiations of other ebBP QoS attributes. Also, the
hasLegalIntent value should be passed on to the backend
applications.
isNonRepudiationRequired and isNonRepudiationReceip-

tRequired are special in implying a very hard error model.
Non-repudiation usually is defined as the property that the
sender of a particular message cannot deny having sent
the message. The attempt to deny having sent/received
a message implies that an integration partner cannot be
assumed to behave as defined in a protocol specification. If
so, the possibility of implementing two-way non-repudiation
is questionable, i.e., the sender cannot deny having sent a
message while the receiver cannot deny having received
it. Consistently, no WS-* standard could be found that
implements non-repudiation in a mutual way. Therefore,
we propose to implement non-repudiation in an asymmetric
way by simply attaching a signature to business documents
and business signals and archiving these messages upon
arrival. Once the non-repudiated message has been archived
the receiver can claim to have successfully received the
message. If a BT execution succeeds (which should be the
standard case) then having implemented non-repudiation in
an asymmetric way does not do any harm. If it fails, the
receiver of the non-repudiated message may assert a claim
based on the message. The remaining QoS features listed
in table 1 can easily be implemented at the control process
level and are discussed in the next section.

5.2. Control Flow

This section presents the control flow of control processes
using a state machine based model. A core design decision
is the choice of communication style between automata,
i.e., synchronous or asynchronous. [11] find that assuming
synchronous communication allows for easier automata de-
sign than asynchronous communication. Consistently, syn-
chronous communication has frequently been assumed for
model design and analysis (e.g., [12] [13] [14]). The last
section spelled out that the realization of QoS properties also
is possible for this communication style. Therefore, the work
at hand also adopts a synchronous communication model.
Note that synchronism as used here only concerns one single
message exchange, i.e., the sender of a message only blocks
until the message is delivered. Processing of the message is
then performed asynchronously. Technically speaking, this
corresponds to messaging with a buffer length of 0.
From a software engineering point of view, assuming syn-
chronous communication between control processes imposes
more strict requirements in terms of availability and through-
put than asynchronous communication. This limitation can
be justified because the control processes’ only task is
controlling the interaction between integration partners. At
the same time, control processes can be used to implement
decoupling between the integration partners’ backend sys-
tems. For example, incoming business documents could be
stored in a message queue by the control process and then
be picked up by the backend when appropriate.



5.2.1. State Machine Model. This section describes the
control processes for the running example of listing 1.
Section 5.2.3 illustrates how to derive control processes for
different instances of an ebBP BT model. For formalization,
we are defining the notion of a control process state machine
(CPS) as follows:
Definition 1 (control process state machine). A control
process state machine (CPS) is a 7-tuple (S,s0,F,E,I,G,δ)
consisting of the following elements:

• S a finite set of states and s0 ∈ S the initial state.
• F ⊆ S a non-empty set of final states.
• E = M∪L a set of events where M is a set of message

exchange events and L is a set of local events. Every m
∈ M consists of a communication partner p, a direction
d ∈ {!, ?} and the actual message type t. We write p!t
for an outgoing message t to partner p and p?t for an
incoming message t from partner p.

• I a set of counters with domain N0.
• G a set of guards with G ⊆ N0 × {<,≤,=, >,≥}× I
• δ is a partial transition function δ : S×E×2G ⇀ S×2I

The following communication partners are used for the
definition of CPSs that can be combined pairwise, i.e., the
communication between two CPSs is not visible to a third
CPS. REQ and RES denote the requestor and responder
control process implementing an ebBP BT. BE1 and MA1

denote the backend and the master process of the requestor
party where BE1 implements business logic like validation
of business documents while MA1 implements the superor-
dinate ebBP BC. Accordingly, there are BE2 and MA2 roles
for the responder party. Additionally, RAC denotes a com-
ponent implementing simple validation logic (e.g., schema
validation) which is needed by the responder control process.
The state diagrams depicted in figures 2 and 3 denote the
transition relation of the REQ and RES CPSs. Note that
the integration of control processes with backend systems
is private logic of the integration partners and therefore is
not a formal element of our ebBP BT execution model.
Nonetheless, the BEk, MAk and RAC parties are included
for showing one valid way of integration. Clearly, any
implementation that accepts the same set of communication
sequences between control processes is acceptable.
The message types (set M of a CPS) selected for interaction
between control processes are aligned with the ebBP spec-
ification. bizDoc is an abstract type denoting the business
document to be exchanged. ra and aa denote ebBP’s Re-
ceiptAcknowledgement and AcceptanceAcknowledgement,
respectively, while rae and aae denote the according ex-
ceptions. ge denotes GeneralException that is used by ebBP
for conveying exception information that is not covered by
rae and aae. start (containing initialization information),
solBizDoc (for soliciting the business document to be ex-
changed), cancel (for giving the backend the opportunity
to cancel the BT run) and persist (for specifying that the

Figure 2. Requester Control Process Machine

message exchange succeeded) are only needed for modeling
interaction with the remaining parties.
The following local events (set L of a CPS) have been
defined. For any message type m ∈ M, there is a <m>Fail
event that models the case that the sending CPS could
not deliver the message of type m to the receiving CPS.
The event is modeled as local because the receiving CPS
might not even realize that the messaging exchange failed.
There are no <m>Fail events defined for the interaction
between control processes and BEk, MAk, RAC processes
because this interaction is assumed to be safe (cf. sec-
tion 3). toTTP, toRA, toAA model timeout events for the
timeToAcknowledgeReceipt, timeToAcknowledgeAcceptance
and timeToPerform parameters of an ebBP BT definition.
Basically, these timeout events are controlled by the REQ
CPS in order to avoid concurrent timeouts. Only in the
AwaitBizDoc state of the RES CPS, a toTTP event is
defined in order to avoid that the RES CPS waits forever.
I is defined as {errCount, maxRetries} for implementing
ebBP’s retryCount parameter. isIntelligibleCheckRequired is
not explicitly reflected in the control flow. ebBP provides
Receipt/AcceptanceAcknowledgements and the according
exception types for conveying legibility information. The
details of the validation checks required are to be defined
by the integration partners. The Success and Failure states
in figures 2 and 3 represent the state machines’ final states.
These states represent purely technical results, i.e., whether
all necessary messages successfully have been exchanged
or not. As a business transaction implementation may be



Figure 3. Responder Control Process Machine

reused in several contexts (cf. section 4.4), the computation
of a business level result, e.g., whether or not a document
exchange represents the obligation to pay an invoice, is to be
done at the level of the calling collaboration implementation.
This implies that the protocol result together with the
exchanged business document are propagated to the calling
implementation upon reaching a final state (not explicitly
modeled in the state machines).
For presentation purposes, two visual simplifications have
been introduced that are not reflected in the CPS definition.
Composite states have been introduced for limiting the num-
ber of transitions. The actual automaton can be derived by
adding a copy of each transition emerging from a composite
state to every (non-pseudo-) state contained in the composite
state. Also, when a transition carries two events separated by
a semi-colon, then there actually are two transitions defined
(and guards and increments only apply to the last event).
Finally, note that the names of states do not contribute to
the semantics of the state machines and therefore are not
explicitly explained.

5.2.2. Semantics. Common state machine semantics do not
assume a synchronous communication model (like in [15])
or do not consider local events (like in [13]). Therefore,
we define the semantics of CPS operationally as follows
(remember that the model definition is non-hierarchical):
Consider a pair of CPS machines (CPS1,CPS2). Let Mp be
the set of all message types that can be exchanged between

CPS1 and CPS2. Further, let a configuration c be defined
as c ∈ C = S1 × E∗1 × V1 × S2 × E∗2 × V2 where V is
the set of all possible values of the counters of a CPS:
V= 2I→N0

. Finally, let ψ : G × V → {tt, ff} be the
boolean function that evaluates guards under given counter
values to true (tt) and false (ff ) and φ the function that
extracts the communication partner from a messaging event.
The semantics of a pair of CPS machines CPS1 and CPS2

is then defined by the relation ` on C × C that captures
communication between automata (comm) or local behavior
of one automaton (local). Rules 1 and 2 describe a message
exchange from CPS1 to CPS2 and a local event of CPS1.
For brevity, symmetric rules for CPS2 are left out:

1: (s1, CPS2!m1υ1, v1, s2, CPS1?m2υ2, v2) `comm

(s′1, υ1, v′1, s
′
2, υ2, v′2) iff

m1 = m2 ∈ Mp ∧
δ(s1, CPS2!m1, α1) = (s′1, β1) ∧
α1 = {} ∧ ∀i ∈ β1 : v′1(i) = v1(i) + 1 ∧
δ(s2, CPS1?m2, α2) = (s′2, β2) ∧
α2 = {} ∧ ∀i ∈ β2 : v′2(i) = v2(i) + 1

2: (s1, e1υ1, v1, s2, e2υ2, v2) `local

(s′1, υ1, v′1, s2, e2υ2, v2) iff

(e1 ∈ L1 ∨ φ(e1) 6= CPS2) ∧
δ(s1, e1, α1) = (s′1, β1) ∧
∀g ∈ α1 : ψ(g, v1) = tt ∧
∀i ∈ β1 : v′1(i) = v1(i) + 1

5.2.3. Configurability. Section 4 mandates that the ebBP
BT execution model should be freely configurable. The
implementation of the execution parameters as listed in table
1 has been discussed above. Yet, there could be different
selections of control messages, i.e., whether Receipt/Ac-
ceptanceAcknowledgements are to be used or if a second
business document is to be exchanged. The correct CPSs
when leaving out a Receipt/AcceptanceAcknowledgement
can be derived by first removing all transitions triggered
by an ra/rae/aa/aae and then removing all states that do not
have outgoing transitions triggered by message exchanges
anymore and then adjusting dangling transitions accordingly.
For example, if RA and AA would have to be removed from
the REQ CPS, the RES!bizDoc transition would have to be
connected to the Propagate state. The correct REQ CPS
for an ebBP two-action BT can be derived by appending
the RES state machine to the REQ state machine. When
appending, the Start state of the RES CPS replaces the Prop-
agate state of the REQ state machine. The two-action RES
state machine then can be derived accordingly. Note, that
the responsibility for monitoring the overall timeToPerform
then must be switched from the REQ CPS to the RES CPS
after finishing the first action.



Configurability also raises the question of dependencies
between configuration parameters. For example, defining a
timeToAcknowledgeReceipt requires that a ReceiptAcknowl-
edgement is exchanged. Due to space limitations, a thorough
discussion of dependencies cannot be provided here.

6. Related Work

Abstract models for interacting parties are frequently re-
searched, e.g., [16], [13] or [17]. In our work we specifically
target at ebBP BusinessTransactions that cover domain-
specific characteristics of B2Bi document exchanges. In this
area, the execution of RosettaNet PIPs [18], [19] or UMM
BusinessTransactions [5], [20], [21] using Web Services
or WS-BPEL has been researched. RosettaNet PIPs as
well as UMM BusinessTransactions share a lot of concepts
with ebBP BusinessTransactions. The work presented there
does not investigate the implications of composing Busi-
nessTransactions within collaborations in detail. Particularly,
implementation of QoS attributes in a mutual way has
not been considered. A precise abstract model with clearly
defined semantics based on synchronous communication
also has not been presented. The same holds true for [6]
that describes the execution of ebBP BusinessTransactions
using BPEL processes while respecting QoS. In particular,
QoS attributes are implemented asymmetrically only.

7. Conclusion and Future Work

In this work we have presented an ebBP BusinessTrans-
action execution model that reflects the implications of
composing BTs within BCs, that is abstract in allowing for
different implementations of control processes, and that is
flexible in allowing for different instantiations of an ebBP
model. A BPEL-based prototype2 implementation has been
used for validating the model.
Future work comprises implementing the execution model
in the context of an model-driven approach that derives
distributed orchestrations from ebBP choreographies as de-
scribed in [7] as well as validating such a model-driven
approach in an industry case study. Further, the applicability
of the execution model to other important B2B integration
technologies like AS2 and ebMS is to be investigated.

References

[1] Backer et al., “A scenario-based verification technique to
assess the compatibility of collaborative business processes,”
Data Knowl. Eng., vol. 68, no. 6, pp. 531–551, 2009.

[2] A. Schönberger and G. Wirtz, “Using Webservice Choreog-
raphy and Orchestration Perspectives to Model and Evaluate
B2B Interactions,” in SERP 2006.

[3] OASIS, ebXML Business Process Specification Schema Tech-
nical Specification, 2nd ed., OASIS, December 2006.

[4] ——, Web Services Business Process Execution Language,
2nd ed., April 2007.

[5] J.-H. Kim and C. Huemer, “From an ebXML BPSS chore-
ography to a BPEL-based implementation,” SIGecom Exch.,
vol. 5, no. 2, pp. 1–11, 2004.

[6] A. Schönberger et al., “QoS-enabled business-to-business
integration using ebBP to WS-BPEL translations,” in Proc.
of the IEEE SCC 2009 Int. Conf. on Services Computing.

[7] A. Schönberger and G. Wirtz, “Using variable communication
technologies for realizing business collaborations,” in Proc. of
IEEE 2009 World Congress on Services (SERVICES PART II).

[8] M. Backes, S. Moedersheim, B. Pfitzmann, and L. Vigano,
“Symbolic and cryptographic analysis of the secure ws-
reliablemessaging scenario,” in FOSSACS 2006.

[9] K. Bhargavan, R. Corin, C. Fournet, and A. D. Gordon,
“Secure sessions for web services,” ACM Trans. Inf. Syst.
Secur., vol. 10, no. 2, p. 8, 2007.

[10] M. Gudgin, M. Hadley, and T. Rogers, Web Services Address-
ing 1.0 - Core, W3C, May 2006.

[11] T. Bultan, J. Su, and X. Fu, “Analyzing conversations of web
services,” IEEE Int. Comp., vol. 10, no. 1, pp. 18–25, 2006.

[12] D. M. Yellin and R. E. Strom, “Protocol specifications and
component adaptors,” ACM Trans. Program. Lang. Syst.,
vol. 19, no. 2, pp. 292–333, 1997.

[13] B. Benatallah, F. Casati, and F. Toumani, “Representing,
analysing and managing web service protocols,” Data Knowl.
Eng., vol. 58, no. 3, pp. 327–357, 2006.

[14] S. McIlvenna, M. Dumas, and M. T. Wynn, “Synthesis of
orchestrators from service choreographies.” in Proc. of 2009
Asia-Pacific Conf. on Conceptual Modelling (APCCM).

[15] R. Eshuis, “Reconciling statechart semantics,” Sci. Comput.
Program., vol. 74, no. 3, pp. 65–99, 2009.

[16] W. M. P. van der Aalst and M. Weske, “The P2P approach to
interorganizational workflows,” in Proc. of the 2001 Int. Conf.
on Advanced Information Systems Engineering (CAISE).

[17] T. Bultan and X. Fu, “Specification of realizable service
conversations using collaboration diagrams,” Service Oriented
Computing and Applications, vol. 2, no. 1, pp. 27–39, 2008.

[18] R. Khalaf, “From RosettaNet PIPs to BPEL processes: A
three level approach for business protocols,” Data Knowlegde
Engineering, vol. 61, no. 1, pp. 23–38, 2007.

[19] A. Schönberger and G. Wirtz, “Realising RosettaNet PIP
Compositions as Web Service Orchestrations - A Case Study,”
in 2006 Int. Conf. on e-Learning, e-Business, Enterprise
Information Systems, e-Government, & Outsourcing (EEE).

[20] C. Huemer and M. Zapletal, “A state machine executing
UMM business transactions,” in Proc. of the 2007 IEEE Int.
Conf. on Digital Ecosystems and Technologies (DEST).

[21] B. Hofreiter, C. Huemer, P. Liegl, R. Schuster, and M. Zaple-
tal, “Deriving executable BPEL from UMM business transac-
tions,” in IEEE SCC. IEEE Comp. Soc., 2007, pp. 178–186.


	1 Introduction
	2 Basics
	3 Integration Architecture
	4 Requirements Analysis
	4.1 The ebBP BusinessTransaction Model
	4.2 Mutual Agreement and QoS
	4.3 Configurability
	4.4 Composition Context

	5 Execution Model
	5.1 Realization of Quality-of-Service
	5.2 Control Flow
	5.2.1 State Machine Model
	5.2.2 Semantics
	5.2.3 Configurability


	6 Related Work
	7 Conclusion and Future Work
	References

